

WHAT IS ARIA?

Amyloid-related imaging abnormalities, also known as 'ARIA', are a consequence of the presence of amyloid in blood vessel walls (cerebral amyloid angiopathy [CAA]).¹ CAA can cause **spontaneous ARIA** in patients with Alzheimer's disease (AD)¹

The risk of ARIA is increased with the use of monoclonal antibodies that remove amyloid plaque in patients with AD.¹⁻³ In these cases, surveillance MRIs can be used to **monitor for ARIA**^{1,3}

WHAT ARE THE SYMPTOMS OF ARIA?

- In most cases, ARIA is found on MRI imaging and is asymptomatic^{1,4}
- The symptoms of ARIA-E are nonspecific and include headache, confusion, nausea, vomiting, visual disturbances, neuropsychiatric symptoms, dizziness, fatigue, or gait disturbances.^{1,4,5}
 ARIA-H cases are generally asymptomatic⁴
- Infrequently, severe neurological symptoms occur (e.g., encephalopathy, focal neurological symptoms, seizures, and status epilepticus)⁴⁻⁶

ARIA MR • Parence

ARIA MRI FINDINGS INCLUDE^{1,2,4}:

- Parenchymal vasogenic edema (ARIA-E)
- Sulcal effusion (ARIA-E)

- Superficial siderosis (ARIA-H)
- Cerebral microhemorrhages (ARIA-H)
 Intracerebral hemorrhage
- (also termed macrohemorrhages)

ARIA-E AND ARIA-H⁴

ARIA is subdivided into **ARIA-E** (edema/sulcal effusion) or **ARIA-H** (hemosiderin/hemorrhage)⁴ ARIA-E and H may occur concurrently²

	ARIA-E	ARIA-H	
Primary diagnostic imaging sequence	T2-FLAIR ²	T2*GRE ² microhemorrhage superficial siderosis	
Image findings	Increased signal on FLAIR images, no abnormal diffusion restrictions ²	Very-low-intensity signals on T2*GRE MRI images ^{1,4}	
Nature of leakage products	Proteinaceous fluids⁴	Blood-degradation products ⁴	
Location of increased vascular permeability	Parenchyma: vasogenic edema ⁴ Leptomeninges: sulcal effusions (i.e., exudates) ⁴	Parenchyma: microhemorrhages (<10 mm) and intracerebral hemorrhage (also termed macrohemorrhages) (≥10 mm) Leptomeninges: superficial hemosiderin deposits (superficial siderosis) ⁴	
Evaluation of severity	Symptoms and MRI severity scales ^{4,7}	Assessment of symptoms and number of microhemorrhages and hemosiderin deposits on MRI ^{4,7}	

MRI images from Barakos et al (2022)

AVOIDING PITFALLS FOR DETERMINING RADIOGRAPHIC SEVERITY

ARIA-E can be easily missed by conventional T2 sequence due to the T2 hyperintensity of CSF, justifying the need for a T2-FLAIR sequence² ARIA-E: avoid imaging patients on different scanners over time since white matter signal may differ with scan technique and field strength; identification of shading artifacts may also be difficult owing to scanner or sequence variability⁷ ARIA-H: susceptibility weighted imaging (SWI) is more sensitive for the detection of microhemorrhages versus T2*GRE images¹

ARIA SEVERITY RADIOGRAPHIC GRADING

ARIA-E, ARIA-H microhemorrhage, and ARIA-H superficial siderosis are each categorized by radiographic severity (mild to severe) based on the following criteria⁷

	MILD	MODERATE	SEVERE
ARIA-E Sulcal and/or cortical/subcortical	1 location <5 cm	1 location 5-10 cm OR >1 location each <10 cm	≥1 location >10 cm
FLAIR hyperintensity ARIA-H Superficial siderosis	1 focal area	2 focal areas	>2 focal areas
	≤4 treatment-emergent microhemorrhages	5-9 treatment-emergent microhemorrhages	≥10 treatment-emergent microhemorrhages
ARIA-H Number of new microhemorrhages			

ARIA is graded on the basis of treatment-emergent events. For ARIA-H, this count includes cumulative new microhemorrhages or regions of siderosis compared with the baseline, pretreatment examination.' MRI images data on file

MRI ACQUISITION PROTOCOLS TO DETECT AND MONITOR ARIA^{1,3}

MRI protocol: standards for detection of ARIA in clinical trials	3T scanner (recommended) 1.5T scanner (minimal) ^{1,7}	High-field-strength scanners have greater sensitivity but limited availability. The use of 1.5T scanner is endorsed as a minimum standard ¹	
	Slice thickness¹: ≤5 mm	Thinner slices increase resolution, but decrease signal-to-noise ratio ¹	
	TE¹≥20 ms	Longer TE increases sensitivity to detection ¹	
	2D T2*GRE or SWI (for ARIA-H) ^{1,3}	To identify superficial siderosis and microhemorrhages (ARIA-H), ¹ T2*GRE and SWI are MRI sequences used to improve the detection and visualization of microhemorrhages ¹	
	T2-FLAIR (for ARIA-E) ¹	To monitor brain edema or sulcal effusion (ARIA-E) ³	
Figure adapted from Barakos et al (2022)	Diffusion weighted imaging (DWI) ³	Recommended for differential diagnosis ³	

REFERENCES:

- 1. Sperling RA, et al. Alzheimers Dement. 2011;7(4):367-385;
- 2. Barakos J, et al. AJNR Am J Neuroradiol. 2013;34(10):1958-1965;
- 3. Barakos J, et al. J Prev Alzheimers Dis. 2022;9(2):211-220;
- 4. Filippi M, et al. JAMA Neurol. 2022;79(3):291-304;
- 5. Salloway S, et al. JAMA Neurol. 2022;79(1):13-21;
- 6. VandeVrede L, et al. Alzheimers Dement (Amst). 2020;12(1):e12101;
- 7. Cogswell PM, et al. AJNR Am J Neuroradiol. 2022;43(9):E19-E35.

ABBREVIATIONS:

AD, Alzheimer's disease; ARIA, amyloid-related imaging abnormalities (includes ARIA-E and H); ARIA-E, ARIA-edema/effusion; ARIA-H, ARIA-hemosiderin/hemorrhage; CAA, cerebral amyloid angiopathy; CSF, cerebrospinal fluid; DWI, diffusion weighted imaging; FLAIR, fluid-attenuated inversion recovery; GRE, gradient recalled echo; MRI, magnetic resonance imaging; SWI, susceptibility weighted imaging; T, Tesla; TE, echo time.

www.UnderstandingARIA.com

